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of SU(3) ⊂ G2. The double dimensional reduction of the M5-brane is the D4-brane, and

its direct reduction is an NS5-brane. We show that the equation of motion for the 3-form

on the NS5-brane wrapping a Calabi-Yau space is exactly the Kodaira-Spencer equation,

providing support for a string-fivebrane duality in topological string theory.
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1. Introduction and conclusions

The purpose of this paper is to formulate and examine the stability conditions (generalised

calibration relations) for M5-branes in the topological M-theory formulated in ref. [17] (see

also refs. [9, 39]). The stability conditions, which have been discussed from a world sheet

point of view for D-branes in string theory in ref. [25] and for topological string theory in

refs. [26, 8, 27], can also be seen as a direct consequence of calibration [28] or demanding

supersymmetry [29, 7, 30, 31]. As is the case e.g. for the D4-brane in the A-model, the

stability conditions demand non-vanishing world-volume field strength. Here we derive the

corresponding stability conditions for the M5-brane in topological M-theory and its close

relative the NS5-brane in the topological A-model. This is achieved using the κ-symmetric

top-form formulation applied to the physical M5-brane in ref. [1]. In this approach there

is in the 7-dimensional G2 superspace, apart from the super-4-form field strength, also

a super-7-form field strength obeying the appropriate Bianchi identities, but without a

bosonic component.

The M5-brane is, apart from the topological membrane constructed in ref. [2] (for a

different approach see ref. [23, 32]), the only brane present in topological M-theory.1 Their

direct and double dimensional reductions on a circle to a Calabi-Yau space give all NS-

branes and D-branes in the A-model save for the isotropic D-branes with one-dimensional

world sheets introduced in ref. [27] which should probably be viewed as Kaluza-Klein

modes.

We proceed to demonstrate how the direct reduction of the M5-brane on CY×S1 gives

the NS5-brane in the topological A-model introduced in ref. [18, 19] (see refs. [11, 33] for a

review of topological string theory), whose world-volume inherits the dynamical Kodaira-

Spencer deformation theory [34] from the M5-brane. The related connection between

the M5-brane instantons in the physical M-theory and Kodaira-Spencer theory was first

pointed out in ref. [7]. The double reduction will give the D4-brane, with the stability

1
G2 target spaces occur also in the topological string constructed in ref. [3]; its relation to topological

M-theory is, however, unclear to us.
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conditions formulated by Kapustin and Li [8] (although that correspondence is not shown

in the present paper). The NS5-brane provides a precise description of how duality between

Kähler gravity [22] and Kodaira-Spencer theory [21], describing deformations of the Kähler

and complex structures, respectively, is realised in the A-model as a “string-fivebrane

duality” [35]. A forthcoming paper [24] will extend the discussion to the full sets of D-

branes and RR fields in the A- and B-models.

Related conjectures have been made earlier. In ref. [10] Dijkgraaf, Verlinde and Vonk

used T-duality to relate the partition function on coinciding NS5-branes (with linear self-

duality) in the A-model to a B-model calculation. S-duality, relating the A- and B-models

on the same manifold, for topological strings, was conjectured on a twistorial CY by Neitzke

and Vafa [11], and clarified, mainly using D-instantons, by Nekrasov, Ooguri and Vafa in

ref. [12], where the existence of the topological NS5-brane was also pointed out. The

relevance of the calculation of ref. [10] in this context was observed in ref. [36]. Gerasimov

and Shatashvili, in their paper pointing towards a topological M-theory [9], relate Kodaira-

Spencer theory to a 7-dimensional theory. Mariño et al. [7] derive conditions forD = 11 M5-

branes wrapping a Calabi-Yau space to preserve supersymmetry, and derive the Kodaira-

Spencer equation. We comment to the relation of the present paper to the latter work in

section 3.

2. Topological M5-branes

The reduction of topological M-theory on a circle contains the A-model [17]. The presence

in the A-model of a D4-brane and an NS5-brane implies that there has to be a 5-brane in

topological M-theory. The purpose of this section is to derive, using superspace techniques

and κ-symmetry, the stability conditions for this topological M5-brane, and to demonstrate

the consistency between these conditions and the non-linear self-duality for the 3-form field

strength on the brane. Open topological membranes have boundaries on the 5-brane, just

as fundamental strings end on D-branes and D-branes on NS5-branes in the A-model.

As in ref. [2], where topoloical membranes were considered, the background for the

branes is described by superspace geometry. This approach was motivated by the absence

of “spinning” supermembranes. In such a formulation there is no need for explicitly per-

forming a twist to obtain the representations of the fields in the topological model; the

“twisting” is automatically implied by the G2 holonomy. The relevant superspace is that

of minimal (euclidean) 7-dimensional supergravity, with 16 real fermionic directions and

R-symmetry group SL(2). The background is not treated as dynamical. The formalism

makes the connection to M-theory and its instantons direct. It is possible to show that

the 7-dimensional Hitchin model corresponding to deformations of the G2 structure is ob-

tained by considering the cohomology of the surviving supercharge in this half-maximal

supergravity theory, and we will do this in detail in a forthcoming publication [24].

Let us begin with some details and conventions concerning the superspace background.

The number of fermionic coordinates, 16, is half of that superstring theory or M-theory, and

appropriate for the formulation of a topological 7-or 6-dimensional theory. The dimension-0
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components of the torsion and the 4-form field strength are

T a
αI,βJ = 2εIJγ

a
αβ , (2.1)

Hab,αI,βJ = 2εIJ (γab)αβ . (2.2)

The real γ-matrices, which can be viewed as imaginary unit octonions multiplying octo-

nionic spinors of Spin(7), square to −1. For details on γ-matrices etc., we refer to the

appendix and to ref. [2].

Even though there is no bosonic 7-form field strength in the supergravity multiplet,

there is a 7-form field strength on superspace, namely

Habcde,αI,βJ = 2εIJ(γabcde)αβ ,

with the Bianchi identity dH + 1
2H ∧ H = 0, following from the 7-dimensional Fierz

identities. This presence of a superspace field strength that does not contain a purely

bosonic part, or, more precisely, the absence of an invariant cohomologically non-trivial

6-form to calibrate the 6-cycle of the brane world-volume, is symptomatic for the cases of

high-dimensional branes where non-vanishing world-volume field strength is demanded by

the generalised calibration (stability) conditions.

We write an action for the 5-brane in complete analogy with ref. [1], the only difference

being that the signature of the world-volume is euclidean,

S =

∫

d6ξ
√
gλ

[

1 + Φ(F ) + (⋆F)2
]

,

where the field λ is a Lagrange multiplier and Φ a functional to be determined. F is the

modified 6-form field strength of a 5-form potential A and the 3-form F is the field strength

of the 2-form A:

F = dA− C , (2.3)

F = dA− C − 1

2
A ∧H (2.4)

where the pullbacked superfield potentials C and C provide the coupling to the background.

These field strengths are constructed with background gauge invariance as guideline. The

Bianchi identities are dF = −H, dF = −H + 1
2F ∧ H. The action has of course to be

supplemented by some self-duality condition. The advantage of actions of this type [13 –

15, 1, 16], with world-volume fields corresponding to all background fields the brane couples

to, is (apart from complete control over background couplings and possible boundary con-

ditions for lower-dimensional branes) that consistency of the non-linear self-duality relation

is restrictive enough that demanding κ-symmetry gives its explicit form, which can be ob-

tained without a priori specifying the function Φ. At the same time, the corresponding

projector on κ is derived, and Φ can be constructed.

We define Kijk ≡ ∂Φ
∂Fijk

. The equations of motion for A, A and λ are

d(λ⋆K) − λ(⋆F)H = 0 , (2.5)

d(λ⋆F ) = 0 , (2.6)

1 + Φ + (⋆F)2 = 0 , (2.7)
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respectively. These must be consistent with the Bianchi identities, thus, combining the

first two equations of motion with the Bianchi identity dF = −H we find K = (⋆F) ⋆ F .

By varying the action using δκF = −iκH and δκF = −iκH + 1
2F ∧ iκH and inserting the

relation between K and the field strengths, the projection matrix on κ and the non-linear

self-duality of the field strengths are obtained. We leave out the details, since they are

in close parallel to ref. [1], and state the result. For the action to be invariant under the

κ-symmetry the parameter κ must satisfy (1 − Γ)κ = 0, with

Γ =
i

N
√
g
εijklmn

[

1

6!
γijklmn +

1

2(3!)2
Fijkγlmn

]

(2.8)

and N ≡
√

1 + Φ. The self-duality relation is

iN⋆F ijk = N2Fijk +
1

2
q[i

lFjk]l , (2.9)

where the sign choice ⋆F = −i
√

1 + Φ = −iN has been used. Here we have introduced

the symmetric matrix kij = 1
2Fi

klFjkl and the traceless q = k − 1
6tr k. Inserting eq. (2.9),

together with the Bianchi identities, into the equations of motion we find Φ = −1
6tr k −

1
24 tr q2 + 1

144 (tr k)2. On the other hand, contracting the self-duality relation (2.9) with F ijk

gives tr q2 = −24N2(1−N2), which by representation theory turns out to be the stronger

relation q2 = −4N2(1 −N2)11. The equation of motion for the Lagrange multiplier λ now

becomes

N2 = 1 − 1

12
tr k . (2.10)

This relation follows in fact also from Γ2 = 11. Dualising the self-duality relation (and using

all the known relations between N , k and q as well as “⋆(qF ) = −q⋆F”) gives consistency.

After elimination of the top-form F , we may write an action of a more standard type

giving the same equations of motion,

S =

∫

d6ξ
√

g(1 + Φ) + i

∫
(

C − 1

2
F ∧ C

)

. (2.11)

Although this type of action (supplemented with some self-duality2) is less convenient as

a starting point, the calibration relations we derive below has a clearer interpretation as

relating kinetic and Wess-Zumino terms, as usual.

We are now ready to consider this M5-brane in a manifold with G2 holonomy, and look

for 6-cycles that, together with the appropriate values of F , preserve supersymmetry. There

is a covariantly constant spinor ηI (for each value of the SL(2) index I), which we take

to be the real part of the octonion. We expect the global supersymmetry to play the rôle

of BRST charges, in analogy with the situation for the topological membrane of ref. [2].

In that reference it was shown that the 3-form field strength, to which the topological

membrane was coupled, can be made invariant under local supersymmetric transformations

by an appropriate gauge choice. This observation is then used to show that the action is

2Note that the implementation of the self-duality condition [1] can only be done on the level of the

partition function, see [6, 4, 5].
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BRST-exact. We expect that the same can be shown for the 6-form field strength of the

M5-brane, so that the action (2) is not only BRST-invariant (supersymmetric) but also

BRST-exact, however the calculations involved would be quite extensive.

Using the explicit expressions for γ-matrices in terms of G2-invariant tensors we have

the action of Γ on the covariantly constant spinor:

Γ

[

1

0

]

=
i

N
√
g
εijklmn

[ 1
2(3!)2

Fijkσlmn

− 1
6!
√

gεijklmnδ
α
7 + 1

2(3!)2Fijk⋆σlmnα

]

, (2.12)

where we for convenience have used a local basis where the direction dx7 is normal to the

world-volume. The tensor σ is the covariantly constant G2-invariant 3-form. The criterion

for supersymmetry is that (1−Γ)η = 0, which yields the stability conditions for the brane:

i

2
F ∧ f∗σ = NVol6 , (2.13)

1

2
F ∧ ⋆σ = −Vol7 , (2.14)

F ∧ ivf∗⋆σ = 0 , (2.15)

where Vol6 and Vol7 are the world-volume and space volume forms, respectively, and

v is any world-volume vector. In order to solve these relations locally, and check their

consistency, we parametrise the tensors using the local breaking of G2 to SU(3), and use

the standard relations σ = Re Ω + ω ∧ dx7, ⋆σ = −ImΩ ∧ dx7 − 1
2ω ∧ ω (see appendix

for conventions). At the moment this is not necessarily to be seen as the direct reduction

to an A-model NS5-brane, although the local parametrisation suits this case. The SU(3)-

covariant version of the stability conditions is

i

2
F ∧ f∗Re Ω = NVol6 , (2.16)

1

2
F ∧ f∗Im Ω = Vol6 , (2.17)

F ∧ f∗ω = 0 . (2.18)

From the conditions (2.18) it follows immediately that Fabc = −1+N
4 Ωabc, Fāb̄c̄ = −1−N

4 Ω̄āb̄c̄

(we suppress explicit pullbacks from now on), and that gbc̄Fabc̄ = 0 and gab̄Fab̄c̄ = 0 (the

last two equations leave only the representations 6̄ out of 6̄⊕3 in F(2,1) and 6 out of 6⊕3̄ in

F(1,2)). It is not a priori clear that the stability conditions, derived from the G2 structure,

are consistent with the self-duality relations. We will however show that this is indeed

the case, and that, given the value of F(3,0) from the stability condition, the self-duality

relation dictates exactly the value of F(0,3) given after eq. (2.18).

It is convenient to parametrise the non-linearly self-dual 3-form F in terms of a linearly

self-dual one, h. It is straightforward to show that hijk = Fijk + 1
2N(1+N)qi

lFjkl satisfies

i⋆h = h. Forming the matrix rij = 1
2hi

klhjkl, the relations above give r = 2
N(1+N)q, so the

relation between h and F becomes hijk = mi
lFjkl, where m = 11+ 1

4r. Inverting the matrix

m, m−1 = (1+N)
2 (11 − 1

4r), finally gives the explicit parametrisation of F in terms of h,

Fijk =
1 +N

2

(

hijk − 1

4
ri

lhjkl

)

, (2.19)
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where the scalar N now is defined by r2 = −161−N
1+N 11.

The general Ansatz for h in terms of SU(3) tensors contains a singlet in h(3,0) (ξ), a

triplet 3 in h(2,1) and the representation 6 in h(1,2) (u). It is clear that the triplet generates

triplets in F violating the last equation in (2.18), so we set it to zero. The Ansatz becomes

habc =
1

2
ξΩabc , (2.20)

habc̄ = 0 , (2.21)

hab̄c̄ =
1

2
ua

d̄Ω̄b̄c̄d̄ , (2.22)

hāb̄c̄ = 0 . (2.23)

The matrix r has the non-vanishing components rab = 4ξua
c̄gbc̄, rāb̄ = 1

4Ω̄ā
cdΩ̄b̄ēf̄uc

ēud
f̄ .

Calculating F from this Ansatz gives immediately Fabc = 1+N
4 ξΩabc, so ξ = 1 by the

stability conditions. We have tr r2 = 96det u (note that detu = 1
8·3! Ω̄

abcΩ̄āb̄c̄ua
āub

b̄uc
c̄),

and thus detu = 1−N
1+N . The complete non-linearly self-dual tensor is

Fabc = −1 +N

4
Ωabc , (2.24)

Fabc̄ =
1 +N

4
Ω̄c̄d̄ēua

d̄ub
ē (2.25)

=
1 −N

4
Ωabd(u

−1)c̄
d ,

Fab̄c̄ =
1 +N

4
ua

d̄Ω̄b̄c̄d̄ , (2.26)

Fāb̄c̄ = −1 +N

4
Ω̄āb̄c̄ det u

= −1 −N

4
Ω̄āb̄c̄ . (2.27)

We notice that the value of F(0,3) consistent with the stability conditions is exactly the one

that follows from non-linear self-duality. This concludes the check of algebraic consistency

of the stability conditions (2.15) with the self-duality relation (2.9), and provides an explicit

parametrisation for the following section.

3. NS5-branes in the A-model and Kodaira-Spencer theory

So far, the analysis is completely local and algebraic. We will show that the equation

of motion (or equivalently, the Bianchi identity) for the 3-form is the Kodaira-Spencer

equation. We will now suppose that the M5-brane actually winds a Calabi-Yau space, so

that it becomes an NS5-brane in the A-model. The components of dF = 0 are (we assume

that the RR field strengths vanish)

(dF )(1,3) : ∂aN − ∂̄b̄[(1 +N)ua
b̄] = 0 , (3.1)

(dF )(2,2) : Ω̄acd∂c[(1 +N)ud
b̄] + Ωb̄c̄d̄∂̄c̄[(1 −N)(u−1)d̄

a] = 0 , (3.2)

(dF )(3,1) : ∂̄āN + ∂b[(1 −N)(u−1)ā
b] = 0 . (3.3)

– 6 –
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It is straightforward to show, using dN = −1
2(1−N2)tr (u−1du), that the first two equations

imply the third. The first equation can be seen as a gauge-fixing condition, while the second

one reads

0 = ∂[a[(1 +N)ub]
c̄] + ∂̄d̄[(1 +N)u[a

d̄ub]
c̄] (3.4)

= (∂[aN − ∂̄d̄[(1 +N)u[a
d̄])ub]

c̄ + (1 +N)(∂[aub]
c̄ − u[a

d̄∂̄d̄ub]
c̄) , (3.5)

which, using the gauge-fixing condition, implies that u fulfills the Kodaira-Spencer equation

∂[aub]
c̄ − u[a

d̄∂̄d̄ub]
c̄ = 0 , (3.6)

corresponding to the deformation of the complex structure encoded in the differential ∂′ =

dza(∂a − ua
b̄∂̄b̄).

The non-linearly self-dual closed 3-form F is exactly the deformation of the form 1
2Ω

defining the complex structure. It will be linearly self-dual under the deformed metric. It

is possible to be quite explicit about the deformed metric G, such that i⋆GF = F . From

the form of the non-linear self-duality relation, it is clear that the metric G satisfies (using

that the antisymmetry of G[i
lFjk]l is automatic provided G is expressible in terms of F )

G3

√
detG

= N11 − 1

2N
q , (3.7)

where contractions are made with the undeformed metric (which we for calculations have

taken to be locally 11). The right hand side has unit determinant. The expressions become

more transparent if we use the normalised matrix s = 1
2N

√
1−N2

q with s2 = −11. We then

have (detG)−1/2G3 = N11 −
√

1 −N2s = e−sθ, where θ is defined by cos θ = N . The

deformed metric is thus defined, up to a scale factor, by

(detG)−1/6G = e−
1

3
sθ . (3.8)

It will of course be hermitean only with respect to the deformed complex structure.

We would like to comment on the relation to the treatment of the 11-dimensional M5-

brane instantons winding on CY spaces of ref. [7]. The projection matrix on the κ parameter

stated there does not contain the actual Γ of eq. (2.8), but only its linearisation in h, which is

the projection arising from a superembedding treatment [37]. It was shown in ref. [38] how

the two apparently different projections “1
2(1−Γ)” are related, and that they both project

on the fermionic gauge degrees of freedom. Here we start from a topological M5-brane,

in a superspace with 7 bosonic coordinates and half the number of fermions compared to

M-theory, whose presence in topological M-theory is necessitated by the existence of D4-

and NS5-branes in the A-model.

A. Conventions

In 7 euclidean dimensions, we use γ matrices that satisfy

{γa, γb} = −2δab , (A.1)
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where the minus sign is necessary for real γ-matrices. The spinors are real ψI
α, where

α = 1, . . . , 8 and the I = 1, 2 is an SL(2, R) R-symmetry index [2].

For the 3-form σ, we use σ124 = 1 and cyclic. On the CY space, with 3 complex

dimensions, we use locally Ωabc = εabc, so that Ω ∧ Ω̄ = 8iVol6. We have gab̄ = 1
2δab̄

and ωab̄ = i
4δab̄, so that ω ∧ ω ∧ ω = −6Vol6. The relations between 7-dimensional and

6-dimensional forms are

σ = Re Ω + ω ∧ dx7 , (A.2)

⋆σ = −Im Ω ∧ dx7 − 1

2
ω ∧ ω . (A.3)

The real 7-dimensional γ matrices encoded in the left multiplication of a spinor λ =

λα̂eα̂ by an imaginary unit ea are

(γa)αβ = σa
αβ , (A.4)

(γa)0α = δa
α . (A.5)

The Clifford algebra is spanned by the so(7)-invariant tensors δα̂
β̂
, (γa)α̂

β̂
, (γab)α̂

β̂
and

(γabc)α̂
β̂
, of which the first and last are symmetric and the second and third antisymmetric

matrices. The decomposition in terms of G2-invariant tensors is

δα̂
β̂

=

[

1 0

0 δα
β

]

, (A.6)

(γa)α̂
β̂

=

[

0 δa
β

−δaα σaα
β

]

, (A.7)

(γab)α̂
β̂

=

[

0 −σab
β

σabα − ⋆ σabα
β − 2δab

αβ

]

, (A.8)

(γabc)α̂
β̂

=

[

σabc − ⋆ σabc
β

− ⋆ σabcα 6δ
[a
(ασ

bc]
β) − δα

βσ
abc

]

. (A.9)
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